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Abstract

Human behavior is the confluence of output from vol-
untary and involuntary motor systems. The neural ac-
tivities that mediate behavior, from individual cells to
distributed networks, are in a state of constant flux. Ar-
tificial intelligence (AI) research over the past decade
shows that behavior, in the form of facial muscle ac-
tivity, can reveal information about fleeting voluntary
and involuntary motor system activity related to emo-
tion, pain, and deception. However, the AI algorithms
often lack an explanation for their decisions, and learn-
ing meaningful representations requires large datasets
labeled by a subject-matter expert. Motivated by the
success of using facial muscle movements to clas-
sify brain states and the importance of learning from
small amounts of data, we propose an explainable self-
supervised representation-learning paradigm that learns
meaningful temporal facial muscle movement patterns
from limited samples. We validate our methodology by
carrying out comprehensive empirical study to predict
future speech behavior in a real-world dataset of adults
who stutter (AWS). Our explainability study found fa-
cial muscle movements around the eyes (p <0.x001)
and lips (p <0.001) differ significantly before pro-
ducing fluent vs. disfluent speech. Evaluations using
the AWS dataset demonstrates that the proposed self-
supervised approach achieves a minimum of 2.51% ac-
curacy improvement over fully-supervised approaches.

Introduction
Every action is preceded by information flow between spe-
cific sensory and motor networks responsible for producing
the desired movement. This information flow resides in dis-
tributed neuronal networks that are in a constant state of flux.
Research has shown micro involuntary movements also ac-
company many desired voluntary movements. To date, most
research on human behavior focuses on the easy to quantify
factors of voluntary movements like reaction times and ac-
curacy while ignoring the information present in the invol-
untary movements. Involuntary movements have been his-
torically ignored due to the difficulty in identifying, quanti-
fying and interrupting the information present in them.
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Figure 1: Facial muscle movement dynamics of individu-
als with speech disorders indicates large variations in upper
and lower muscle groups during speech disfluency. We learn
to distinguish these subtle micro-expressions using our pro-
posed self-supervised explainable algorithm.

The face is a known body region to be rich with both vol-
untary and involuntary movements. It is evident that specific
combinations of voluntary facial muscle activations could
even induce real emotions (Ekman, Levenson, and Friesen
1983) varying slightly between cultures (Ekman 1992). Fa-
cial activity is a treasure-chest of information which aids
psychologists and neuropsychologists to examine and diag-
nose various diseases (Wu et al. 2014; Bandini et al. 2016).
These facial activities are usually micro-expressions (Oh
et al. 2018) which are subtle involuntary facial expressions
happening briefly (Ekman 2009; Verma et al. 2019) in the
upper and lower facial regions.

The successes in encoding facial muscle patterns as facial
Action Units (AUs) (Ekman and Rosenberg 2005; Friesen
and Ekman 1978) and using AUs to study attention, affect
(Sayette et al. 2002; Hamm et al. 2011; Lints-Martindale
et al. 2007), and pain (Kunz, Meixner, and Lautenbacher
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2019) demonstrates the use of data-driven study of facial
activities in estimating cognitive states. The recent surge
in using Deep Learning (DL) based Artificial Intelligence
(AI) algorithms in modeling facial activities to detect micro-
expressions and diseases (Bandini et al. 2017; Jiang et al.
2020) affirm the use of data-driven approaches for auto-
mated analysis of the face in the field of medicine. Numer-
ous studies also establish relationships between upper and
lower facial muscle movements in affect (Wang, Wang, and
Ji 2013; Wehrle et al. 2000; Mehu et al. 2012) and speech
motor preparation (Meng, Han, and Tong 2017). Together,
these provide a new venue to explore facial muscle move-
ment dynamics for various neuro-cognitive disorders, espe-
cially in studying speech disfluencies.

Supervised DL algorithms, however, require a large
amount of data to optimize the parameters of deep neural
networks such as Convolutional Neural Networks (CNNs).
Several authors have used more than 100,000 labeled images
to train CNNs for disease prediction (Gulshan et al. 2016;
Das et al. 2019). However, manual labeling of medical data
is resource intense, takes up many human work hours, and
could induce data bias. To mitigate this, techniques such as
self-supervised learning have been proposed to impute ex-
isting data (Cao et al. 2020) and learn better representations
from a limited amount of labeled data (Li et al. 2020). Also,
there is a need to explain the decisions of DL classifiers for
mission-critical tasks such as in healthcare (Das and Rad
2020).

In this paper, motivated by the use of facial AUs in
learning human behavior and the importance of learning
from few samples, we propose a self-supervised pre-training
algorithm to learn dense representations of facial muscle
movements without the need for a large amount of la-
beled data. Here, we define self-supervised pre-training
(pretext) tasks to learn meaningful residual dynamics and
micro-expressions from facial muscle movement informa-
tion. Once the pretext model is trained, we adapt the pre-
trained model for a downstream task of predicting the cog-
nitive states of Adults-Who-Stutter (AWS) based on facial
muscle movement information. We validate our methodol-
ogy on a video dataset to detect stuttering speech disfluency
from facial muscle movements of AWS. More specifically,
we try to predict the future onset of stuttering based on tem-
poral facial AU data available before the speech vocalization
by training classifiers on the embeddings extracted using the
pre-trained pretext models. In summary, our main contribu-
tions include:

• We propose a self-supervised learning scheme to ex-
tract meaningful micro-expression facial muscle move-
ment representations for predicting cognitive states and
neurological disorders.

• We collected the first real-world multimodal behavioral
dataset of AWS subjects and performed the first explain-
able self-supervised stuttering disfluency pilot study. We
show that our self-supervised approach can train with a
very limited amount of data while providing information
about muscle movement dynamics between fluent and
disfluent trials.

• We present our findings which affirm prior knowledge of
secondary motor behaviors during the onset of stuttering
disfluency, especially in the muscles around eye brows
and lips, which could generalize speech-motor behavior
of AWS.

Related Work
Self-Supervised Learning. To learn meaningful represen-
tations from available unlabeled data and apply the knowl-
edge to improve the performance of another domain, self-
supervised learning methods usually consist of a pretext and
downstream task. Pretext tasks are designed to learn and
convert the features and feature correlations to dense vector
representations which can later be used by downstream tasks
(Sheng et al. 2020). Here, the downstream tasks may be
trained for similar or slightly different data problems. State-
of-the-art self-supervised methods are now able to learn tem-
poral correspondence in videos (Li et al. 2019; Tschannen
et al. 2020), speech representations (Shukla et al. 2020), pre-
dicting retinal diseases (Rivail et al. 2019), disfluency detec-
tion from the text (Wang et al. 2019), and many more.

Stuttering Disfluencies and Facial Muscle Activity.
Speech disfluencies, such as stuttering, are disruptions to the
normal flow of speech, and include word or syllable pro-
longations, silent blocks, and part-word repetitions. Among
children under the age of five, 2.5% stutter (Proctor, Duff,
and Yairi 2002; Yairi and Ambrose 1999). Of those who
stutter as children, about 20% continues to stutter as adults
(Craig and Tran 2005). Stuttering reflects multiple stable
factors of the individual, attempted speech message, and
speaking context (Bloodstein and Ratner 2008).

Recent advances in AI, especially in DL, have enabled re-
search in various data-driven learning approaches to detect
stuttering disfluency. Some of the data modalities include
respiration rate (Villegas et al. 2019), and audio (Zhang,
Dong, and Yan 2013) during speech vocalization. A few
studies have looked at supervised DL algorithms to de-
tect stuttering disfluency from pre-speech EEG data during
speech preparation in AWS (Myers et al. 2019).

Initial sound or syllable of speech contributes to over 90%
of speech disfluency (Sheehan 1974). This highlights the
importance of understanding pre-speech secondary behav-
iors to ultimately understand the neuro-psychological as-
pects and cerebral activities of an individual as they pre-
pare to speak. People who stutter often have “secondary be-
haviors” while speaking, such as eye blinking, involuntary
movements of head or limbs, jerks in the jaw, etc. (Prasse
and Kikano 2008). Secondary behaviors may be due to im-
precise motor control in the brain, termed “motor overflow”
(Hoy et al. 2004). Facial and vocal articulators are repre-
sented near each other in human motor cortex (Penfield and
Boldrey 1937), suggesting that speech motor overflow may
influence facial muscle activity. Considering various sec-
ondary behaviors and facial changes on or before speech vo-
calization, we see an opportunity to study the facial muscle
movement patterns before speech utterance to classify stut-
tering disfluency. The present study will test this possibility
in AWS.
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Figure 2: A high-level diagram of our method. We propose two pretext tasks to learn muscle movement dynamics and micro-
expressions without labeled data. Once pre-trained, we use the learned embeddings to carry out stuttering disfluency classifica-
tion. DeepSHAP method is applied to generate explanations of the muscles involved in fluent and disfluent speech.

Self-Supervised Learning for Stuttering Disfluency. At
the time of writing, no published studies have looked at the
facial muscle activities during or before speech vocalization
to study developmental stuttering. We hypothesize that the
facial muscle movement activities during a few seconds of
speech preparation encode enough secondary behavior in-
formation to classify a future speech vocalization as either
fluent or disfluent. However, we still face the challenge of
collecting real-world patient data for stuttering-based stud-
ies. Hence, there is a requirement to learn good facial muscle
movement representations which can model stuttering dis-
fluency from a small number of data samples.

Methods
In order to evaluate the effectiveness of our self-supervised
learning paradigm on a task that is not explored in published
research, we construct a data-driven approach to study learn-
ing performance of the proposed solution. Here, we present
the self-supervised learning methodology and discuss the
architecture and design considerations for the pretext and
downstream task for stutter disfluency classification. A high-
level diagram is illustrated in Figure 2. Hyper parameters
and training details are summarized in individual subsec-
tions.

Self-Supervised Representation Learning
Our self-supervised representation learning approach is
driven by the primary psychological observation that muscle
movements in the face are driven by universal changes (Ek-
man and Rosenberg 2005; Friesen and Ekman 1978) with

upper and lower facial muscle movements showing different
aspects of anticipation and motor behavior (Wang, Wang,
and Ji 2013; Meng, Han, and Tong 2017). Stuttering, as a
speech-motor disease, shows numerous secondary behaviors
on or before speech utterance (Prasse and Kikano 2008) as
we discussed above.

Self-supervised Pre-training. We use a classical machine
learning algorithm to extract facial AUs to model facial mus-
cle movements from HOG features and face geometry (Bal-
trusaitis, Mahmoud, and Robinson 2015). Let v be a video
collected from an individual for a given time-window T ,
we extract facial action units AUi for each frame Fn where
i ∈ I is the action units extracted and n ∈ N is the num-
ber of frames. In this study, I’s cardinal number is 17 and
includes upper AUs 1, 2, 4, 5, 6, 7, 9, and 45, and lower AUs
10, 12, 14, 15, 17, 20, 23, 25, and 26. Facial AU data be-
comes {x|x ∈ RI×N} for each input video segment, with
upper facial AUs and lower facial AUs grouped together.
The goal of the self-supervised pre-training is to learn tem-
poral correlations between the AUs in x using different pre-
text tasks. Towards this goal, we present the following tasks
for pre-training:

Micro-expression Window Finder: In this task, we se-
lect a small 100 ms time-window from the AU input map x,
enough to include micro-expressions, and ask the DL net-
work to predict which window was selected. At any given
time, we select AUs from either the upper or lower face and
never together. This helps to disentangle the representations
and lessen the reliance on specific areas of the face. After
selecting a window, we carry out certain signal transforma-
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tions. This way, the DL algorithm could spatio-temporally
find the correct window chosen. If no window was chosen
(no signal transformations) we label it differently to avoid
mistakes. Altogether if we have W windows, window finder
task will have W + 1 labels named ywin.

Micro-expression Window Loss: The loss function of
window finder task should reinforce the models’ ability to
disentangle upper and lower facial regions as well as under-
standing areas-of-interest. Considering the DL pre-training
model as H and the selected window as w, the loss term
associated with window finder task is defined as:

Lwin(w) = − logPwin(w;H)

Pwin(w;H) = P (ỹwin = ywin|w;H)
(1)

where ywin is the label for window w, ỹwin is the predic-
tion by DL model, and Pwin is the probability of picking the
correct window.

Signal Transformations: The AU map may have inher-
ent errors due to sudden jerks, movements, occlusions, etc.
of the subjects’ faces during data collection. A robust and
meaningful face representation from the temporal AU data
should be invariant to sudden changes in a large group of
AUs. Due to the limited available data samples, the pre-
training model might not be able to learn to mitigate such
anomalies. Hence, for a selected window w of the tempo-
ral AU map, we augment the data with transformations such
as scaling, Gaussian noise, and zero-filling with predefined
parameters of augmentation.

Each transformation has a neurological or data robustness
relation. For example, scaling the AUs in a specific time win-
dow relates to sudden changes in the facial muscle regions
over a period of 100 ms. Gaussian noise could simulate ran-
dom jitters, partial occlusions, etc. while zero-filling could
simulate complete occlusion of either upper or lower facial
region such as during a hand moving across the face. The ac-
tual AU map is also kept as an input without applying trans-
formations. In this case, as discussed above, the label of the
window is chosen to indicate that there is no window to look
for. The labels for the signal transformation task is based on
various transformations and their parameters as summarized
in Table 1.

Signal Transformation Loss: For each input, given a
window w and a signal transformation st with signal ma-
nipulation parameter θst for cases in m(·, θst), we follow
the degradation identification loss presented in (Sheng et al.
2020), and define the loss term for the signal transformation
task st to reinforce the model to learn various signal degra-
dations, sharp increases in facial movement, etc. applied to
the window:

Lst(w, θst) = − logPst(w;H)

Pst(w;H) = P (s̃t = st|m(w, θst);H)
(2)

Total loss function: To improve the learning of micro-
expressions and variations of facial activities, we formulate
the final self-supervised pre-training as a linear combina-
tion of the window loss and signal transformation loss as
described below:

Signal Transformation Parameters θst
Scaling {0.25, 0.5, 1.25, 1.75}
Gaussian Noise {0.1, 0.25, 0.5, 0.75, 0.9}
Zero Fill -
None -

Table 1: Signal transformation tasks and parameters used to
improve pretext tasks.

L = α · Lwin(w) + β · Lst(w, θst) (3)

where α and β are used to balance the loss term.

Stuttering Disfluency Downstream Task. Understanding
the nuances of stuttering disfluency from a pre-speech fa-
cial muscle movement perspective is previously unexplored.
Learning from facial muscle movements is a hard prob-
lem since pre-speech data have more micro-expressions
than large upper or lower facial muscle movements. Since
real-world subject data is limited, we plan to use the self-
supervised pre-trained model as a way of improving the per-
formance of stuttering disfluency classification. We describe
here some of the information regarding the disfluency study.

Subjects: We collected video data from a cohort of AWS
subjects with a mean age of 23 (18-31 years). Each subject
self-reported to have developmental stuttering from child-
hood and was diagnosed by a speech-language pathologist
for verification. Each subject was invited to attend data col-
lection sessions where they were presented with an experi-
mental task. On average, the subjects attended 3.7 sessions.
All studies were done under strict protocols of the Institu-
tional Review Board and the Declaration of Helsinki.

AWS Speech Study and Hardware-Software Design:
The modulations in brain state of AWS have been studied by
introducing a delay that separates speech preparation from
speech execution, with the objective of identifying brain ac-
tivity during speech preparation that predicts later execution
of fluent vs. disfluent speech. We have designed a controlled
experiment to measure AWS speech preparation tasks using
auditory and visual cues. A small delay is imposed using a
specially designed ‘S1-S2’ task to separate speech prepara-
tion and utterance. The subject is seated in a sound booth and
is asked to read pseudo word-pairs from a computer monitor
in front of them. The word-pairs are chosen to mimic En-
glish language phonetically while removing emotional re-
sponses or meaning of words to normalize the ratio of fluent
and disfluent trials across subjects.

Individual trials of S1-S2 tasks span only 1500 ms, where
the subject is shown with a visual stimuli at S1 and is ex-
pected to speak at S2. According to set paradigms, the sub-
ject either sees the pseudo-word-pairs at S1 or at S2. This
is done to study the effect of having the word in memory
towards speech disfluency. The paradigm where the subject
sees a word first is termed “Word-Go” (WG). Here, the sub-
ject sees a word-pair at S1 and “!!!” symbol at S2. In “Cue-
Word” (CW), the subject sees the symbol “+” at S1 and the
word-pair at S2. Two Logitech C920 high-definition cam-
eras are used to collect data from both the face of the subject
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and the monitor at 58 frames-per-second (FPS). EEG and
eye-tracking data were also collected during the experiments
but are not used for the current study.

Data Processing and Statistics: Face videos collected
were split based on the S1-S2 task for each 1500 ms tri-
als, resulting in N=87 frames, per each video v. Each trail
was diagnosed for stuttering disfluency by a certified speech
pathologist and marked as either disfluent or fluent. A label-
balanced dataset was created from 3700 trial studies, result-
ing in 1850 disfluent and 1850 fluent 1500 ms video trials.
AUs were extracted using the OpenFace method described
in (Baltrusaitis, Mahmoud, and Robinson 2015).

Explaining Classifier Decisions: We use DeepSHAP
method (Lundberg and Lee 2017) to study the impact of each
facial AU at specific time-windows towards the classifica-
tion of stuttering disfluency. Here, we consider the input to
the neural network as an image with each pixel correspond-
ing to 17.24 ms of facial muscle movements. DeepSHAP
generates an explanation map e(x) ∈ R17×87 with posi-
tive and negative correlations of each AU towards the clas-
sifier output. We render these explanation maps on the cor-
responding input video frame according to FACS rules and
present them in visual format, Figure 2. By averaging the ex-
planation maps across different trials and studying the mean
and standard deviations, we could start to generalize the
muscle movement behaviors and the neural network learn-
ing performance across subjects with the possibility of per-
sonalized downstream models for each subject.

Experiments
Our training pipeline consists of two parts as illustrated in
Figure 2: a self-supervised pre-training stage to learn mean-
ingful AWS facial muscle movement representations and a
downstream task adaptation stage to study usefulness of the
learned representations for stutter disfluency classification,
both from a limited amount of data. Since one of the input
dimensions x ∈ R17×87 is smaller than 32×32, traditional
models such as ResNet do not work due to unmatched sizes.
Hence, we provide custom architectures as described below.

Pretext Task Network Design: To compare learning per-
formance and generalization of pre-training stage, we de-
signed a customized CNN architecture (CNN-A) to account
for the temporal nature of the data and compare them with
two CNN architectures (CNN-B and CNN-C) designed sim-
ilar to the popular VGG network corrected for number of
layers to accommodate for the shape variation. Our proposed
CNN-A architecture (30k parameters) consists of 4 Convo-
lutional (Conv) layers with {16, 32, 64, 64} kernels respec-
tively, all shaped 1×17. Average pooling is applied after the
first two Conv layers. A depth-wise Conv with 128 kernels
is then applied to compress the data across the AUs. After-
ward, a separable Conv with 64 kernels is used to reduce
the dimensions and output is flattened to an embedding of
1×256 dimensions. Two fully connected dense layers are
added for the model output, one each for Lwin and Lst.

CNN-B architecture (280k parameters) consists of 3 Conv
layers with {16, 32, 64} kernels respectively, all shaped
3×3. To study the impact of additional layers, CNN-C (317k
parameters) has an additional Conv layer with 64 kernels of

size 3×3. Batch normalization is applied after each Conv
layer. Average pooling and dropout is applied on all but the
first convolutional layer. Final convolutional layer output is
flattened to an embedding of 1×256 dimensions similar to
CNN-A with similar output layers, one each for Lwin and
Lst. All CNNs were developed in the Tensorflow framework
(Abadi et al. 2016).

Downstream Task Network Design: We compare the
facial muscle movement representations generated by each
pre-training stage network for two downstream networks: 1)
three fully connected (3FC) Multi-Layer Perceptron (MLP)
layers and 2) a random forest (RF) classifier with 500 trees.
3FC was trained on Tensorflow and the RF models were
trained on ScikitLearn (Pedregosa et al. 2011). Training de-
tails of both tasks are detailed below.

Hyper Parameters and Training Details: For the pre-
text task, we trained all CNN classifiers on NVIDIA GPU
systems on Jetstream Cloud (Stewart et al. 2015) with Adam
optimizer at an initial learning rate of 0.01, scheduled to re-
duce to half the value at every 5 epochs according to multi-
head validation loss (equation 3). Batch normalization, a
50% dropout of nodes, and early stopping were applied to
curb overfitting. The minimum expected decrease in valida-
tion loss for early stopping criteria was in the order of 10−3

for every recurring 3 epochs.αwas set to 0.25 of β. Since we
clip 100 ms video information from the 1500 ms AU map to
learn micro-expressions, we can pick 30 such windows and
an extra None category for cases with no signal transforma-
tions. Hence, the output labels ywin is R1×31. Considering
different signal transformations and parameters in Table 1 as
separate labels, yst is R1×11.

For the downstream task involving 3FC, learning rate
schedule is done per 20 epochs and early stopping checks
for a change within 50 epochs. We use binary cross-entropy
as the loss term for downstream task as the final output clas-
sification is either one of fluent or disfluent trial. To train
3FC network, we froze the pretext networks and trained the
fully connected layers on the embeddings of pretext net-
work. To train the RF model, we pre-extracted the embed-
dings of each pretext network and trained the RF classifier
on the embeddings directly. 10-fold cross validation was car-
ried out to randomly split the data to training and validation
data. A separate hold-out test set was used to evaluate the
performance of each method. Each downstream method was
trained for different percentages of training data to study
the impact of learned pretext latent space on downstream
task from a small amount of data. We provide results for
10%, 25%, 50%, 75%, and 100% of available data, all with
an equal split between stutter and fluent trials. To compare
learning performance of fully-supervised counterparts, we
also train CNN-A, -B, and -C with 3FC from scratch.

Statistical Significance: To study the statistical signif-
icance of the experiments and the impact of upper and
lower facial muscles in stuttering disfluency classification,
we carry out ANOVA tests on the explanation maps of the
best performing classifier. We also study the impact of indi-
vidual AUs and the impact of specific time-zones (0-500 ms,
500-1000 ms, 1000-1500 ms) to understand the significance
of muscle movements across time for our S1-S2 task.
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Data % CNN-A CNN-B CNN-C
AUC F1 Acc AUC F1 Acc AUC F1 Acc

Self-Supervised CNN Pre-training + Downstream Fully Connected Network (3FC)
100 0.82±0.01 0.73±0.01 75.27±1.11 0.82±0.01 0.74±0.02 74.83±1.15 0.82±0.01 0.73±0.03 74.53±1.61
75 0.80±0.01 0.69±0.03 73.59±1.17 0.79±0.01 0.68±0.03 72.17±1.31 0.79±0.02 0.68±0.04 71.51±1.60
50 0.75±0.01 0.70±0.02 71.93±1.70 0.76±0.02 0.68±0.02 69.75±1.72 0.77±0.01 0.68±0.02 70.64±1.21
25 0.75±0.03 0.68±0.05 71.50±3.21 0.78±0.02 0.70±0.03 71.20±2.62 0.80±0.03 0.69±0.02 70.80±3.12
10 0.69±0.03 0.68±0.05 71.75±3.92 0.74±0.03 0.67±0.04 67.00±2.84 0.77±0.03 0.70±0.03 68.50±4.89

Self-Supervised CNN Pre-training + Downstream Random Forest (RF)
100 0.74±0.02 0.71±0.03 73.75±2.04 0.75±0.03 0.73±0.03 75.17±2.59 0.74±0.02 0.71±0.02 73.51±2.40
75 0.74±0.03 0.72±0.04 74.16±3.46 0.75±0.03 0.72±0.04 74.56±3.42 0.74±0.03 0.72±0.03 74.20±3.75
50 0.71±0.02 0.68±0.03 71.11±2.39 0.75±0.03 0.72±0.05 74.72±2.96 0.74±0.04 0.71±0.06 73.81±3.80
25 0.71±0.07 0.67±0.10 70.99±6.38 0.75±0.04 0.72±0.05 74.86±4.79 0.74±0.03 0.71±0.05 73.89±3.49
10 0.72±0.08 0.69±0.08 70.58±7.97 0.73±0.07 0.68±0.10 72.92±7.92 0.67±0.10 0.66±0.12 67.24±9.05

Fully Supervised CNN Training
100 0.74±0.05 0.66±0.04 72.76±1.38 0.81±0.02 0.72±0.03 74.53±1.11 0.81±0.04 0.70±0.04 74.63±1.70
75 0.71±0.02 0.62±0.01 70.20±0.68 0.78±0.04 0.68±0.03 72.83±1.20 0.79±0.02 0.70±0.03 72.96±1.26
50 0.71±0.01 0.63±0.01 70.40±0.54 0.74±0.03 0.67±0.03 66.93±3.74 0.76±0.01 0.63±0.05 68.71±1.28
25 0.70±0.03 0.60±0.03 68.60±1.52 0.73±0.02 0.61±0.03 67.40±1.82 0.74±0.02 0.63±0.03 69.60±2.07
10 0.69±0.03 0.60±0.06 65.50±2.09 0.70±0.04 0.61±0.03 66.00±5.48 0.70±0.04 0.65±0.02 68.00±3.26

Table 2: Stuttering disfluency classification generalization performance for self-supervised and fully-supervised methods. Bold
font represents best performers across CNN-A, -B, and -C and Italics across different methods.

Results and Discussions
In this study, we designed AWS speech preparation experi-
ments and collected a real-world dataset to evaluate whether
facial micro-expression can predict cognitive states and near
future speech behavior. Our pretext tasks were trained on
a 10% randomly picked subset of available data. Our re-
sults of different self-supervised and fully-supervised exper-
iments on all three CNN’s are reported in Table 2 evaluated
for Area-Under-Curve (AUC), F1 score, and accuracy.

Self-supervised pre-training of carefully designed net-
work with less parameters performed better than full-
supervision on same amount of data. It is evident that
self-supervised CNN-A (CNN-Aself ) maintains higher per-
formance than fully-supervised counterpart (CNN-Afull).
CNN-Aself also generated the best overall AUC and accu-
racy out of all our experiments. With only 30k parameters,
this shows that depending on the task and data modality, a
carefully designed small neural network could learn better
latent representations with self-supervised pre-training than
trained fully-supervised from scratch.

RF for downstream task gave good average performance
but is highly unstable for small number of data. Our most
stable results, in terms of average accuracy, is generated by
CNN-B RF method. However, as we see from the standard
deviations, RF method is highly unstable during training.
Our 10-fold cross-validation training proved 3FC networks
to be substantially stable than RF for downstream tasks.

Large number of parameters could help during self-
supervised pre-training. Even though for 3FC networks
CNN-Cself under-performed than CNN-Aself in terms of
accuracy, AUC was more stable for CNN-Cself . RF meth-
ods, though unstable, generated better metrics for CNN-B.
Since our task involves learning micro-expressions from a
1500ms time-window, we designed CNN-A to respect the

temporal nature of expressions. A future study focused on
larger CNN-A architectures could help generalize this idea.

Model Explanation Analysis (MEA): MEA was carried
out using DeepSHAP method on corresponding test datasets
of CNN-Aself FC trained on 100% data and compared it
with the results achieved for CNN-Aself FC on 10% data.
Results showed little variation between the two models. We
present here an analysis on the CNN-Aself FC trained on
10%. For AWS subjects with high stutter rate (SR), we found
high statistical correlation of upper (F=22.09, p <0.001)
and lower (F=14.84, p <0.001) facial AUs towards classify-
ing the disfluency from pre-speech muscle movements. Both
upper (F=18.58, p <0.001) and lower (F=42.83, p <0.001)
facial AUs showed large significance for the first 0-500 ms
of S1-S2 task. The considerable impact of AUs around the
eye region was found in 0-500 ms window with large corre-
lations of eye blinker (AU 45; F=26.34, p <0.001). Eyelid
raiser (AU 7) was prominent in AWS subjects with a low
stuttering rate (F=42.48, p <0.001). These findings are of
high importance since AWS subjects have huge jumps in
cognitive states and show numerous secondary behaviors in-
cluding eye blinking before, during, or after word utterance.
Here, our results suggest that AWS subjects show signs of
anticipation at S1 as they are subjected to the S1-S2 task.

In the lower facial region, a considerable impact is found
for muscles around the lip area including upper lip raiser
(AU 10; F=45.77, p <0.001 [0-1500 ms]), lip stretcher (AU
20; F=29.81, p <0.001 [0-1500 ms]), and lip corner puller
(AU 12; F=51.97, p <0.001 [0-500 ms]). Large correlations
of muscle activity towards the beginning and end of the S1-
S2 task suggests that secondary behaviors could be showing
up as anticipation in the upper face and jitters and micro
expressions in the lower facial region, especially around the
lips. Furthermore, we present Figure 3 as a way of visually
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Figure 3: Facial regions of interest (a), attribution maps (b),
and average muscle movement attributions (c) across AWS
with high stuttering rate (SR) is visualized. Large reliance
on muscles around eye and lip regions can be seen as a dis-
tinguishing factor between disfluent and fluent speech.

interpreting the large variations in the attributions of various
facial muscle movement regions. We can see that individuals
with AWS who stutter more tend to blink more during stutter
trials after 500 ms than fluent trials. Also, we can see highly
intense muscle attributions in the lower facial region. This
is consistent with the behaviors visually observable in some
AWS individuals as they are about to speak.

Ablation Study: To assess the impact of various param-
eters used for Lst during pre-training, we carry out an ab-
lation study by reducing the range of factors used for the
signal transformation. The degradation of accuracy for dif-
ferent data percentages is summarized in Table 3. The large
decrease in accuracy, especially for a lower amount of data
affirms our choice of using larger ranges of signal transfor-
mations for the pretext task. A future research opportunity
might be to explore other signal transformations and ranges
that would be beneficial to learn from temporal datasets.

Impact of embedding dimensions: Facial representa-

Method Data @ x (%)
x=100% x=50% x=10%

CNN-A 3FC ∼ 1.9% ∼ 3.0% ∼ 6.9%
CNN-B 3FC ∼ 3.0% ∼ 6.0% ∼ 6.1%
CNN-C 3FC ∼ 0.8% ∼ 5.0% ∼ 3.5%
CNN-A RF ∼ 4.0% ∼ -0.8% ∼ 6.8%
CNN-B RF ∼ 3.2% ∼ 2.8% ∼ 8.2%
CNN-C RF ∼ 0.6% ∼ 2.1% ∼ 3.2%

Table 3: The degradation in performance caused by reducing
the range of factors used for the signal transformations.

Method Data @ x (%)
x=100% x=50% x=10%

CNN-A 3FC - - -
CNN-B 3FC ∼ -3.7% ∼ -0.9% ∼ 6.9%
CNN-C 3FC ∼ -4.8% ∼ -4.5% ∼ 0.6%
CNN-A RF - - -
CNN-B RF ∼ 2.1% ∼ 0.6% ∼ -0.5%
CNN-C RF ∼ 2.9% ∼ 2.7% ∼ 11.0%

Table 4: The performance changes caused by increasing the
embedding dimensions from 256 to 970 in the pretext task.

tions learned by the pretext models could be influenced by
the size of the final embedding z. To study the effect of
embeddings with larger dimensions, we compare the learn-
ing performance of our downstream tasks for our models
with 1×256 dimensions against embeddings of size 1×970.
Since output dimensions of CNN-A before embedding layer
was only 1×64, we omitted CNN-A from this study. From
Table 4, we can see that the 3FC models did not benefit much
from the larger embedding with the exception of CNN-B
performing better with larger embeddings on smaller data.
In contrast, RF methods performed well with larger embed-
dings for smaller amount of data, especially for CNN-C RF
with one extra CNN layer than CNN-B RF. The choice of
downstream classifier thus depends on the dimensions of the
pretext embedding, especially for RF classifiers.

Conclusion
In this paper, we presented an interpretable self-supervision
methodology to learn meaningful facial muscle movement
representations to investigate the possibility of using these
learned representations to classify neurological disorders.
We successfully showcased that the face representations
could be used to detect future onset of stuttering disflu-
ency. We found that self-supervised pre-training of our care-
fully designed neural network performed better than full-
supervision on same amount of data. Fully connected net-
works were more stable than random forest classifiers for
the downstream stuttering classification task. Our model ex-
plainability analysis found a considerable influence of mus-
cles around the eye (eye blinker AU 45, eyelid raiser AU
7) and lips regions (lip corner puller AU 12, lip stretcher
AU 20) towards identifying stuttering disfluency. Large cor-
relations of muscle activity towards the beginning and end
of each trial suggest anticipation, possible secondary behav-
iors, and micro expressions throughout the trial. Large vari-
ance and amplitude of disfluent trials compared to fluent tri-
als suggests the large facial activity of AWS subjects which
algorithms can learn to classify.

Although it is hard to generalize with smaller populations
of data, our study reveals an automated way to streamline
the process of marking pre-speech facial muscle movement
information of a future vocalization as fluent or disfluent.
Study should be expanded on larger populations of AWS to
generalize the claim. Also, future studies could explore task
personalization to learn facial muscle movement patterns of
individual AWS subjects.
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